Saturday, 30 December 2017

الانحدار الحركة من المتوسط مفهوم


A ريما لتقف على الانحدار التلقائي نماذج المتوسط ​​المتحرك. المتغير أحادي المتغير (أريفا فيكتور) أريما هي تقنية التنبؤ التي تقوم بتطوير القيم المستقبلية لسلسلة تعتمد بشكل كامل على الجمود الخاص بها. تطبيقه الرئيسي هو في مجال التنبؤ على المدى القصير تتطلب ما لا يقل عن 40 نقطة البيانات التاريخية. وهو يعمل بشكل أفضل عندما تظهر بياناتك نمطا مستقرا أو متسقا مع مرور الوقت مع الحد الأدنى من القيم المتطرفة. في بعض الأحيان تسمى بوكس-جينكينز (بعد المؤلفين الأصليين)، أريما عادة ما تكون متفوقة على الأساليب التمهيد الأسي عندما تكون البيانات طويلة إلى حد معقول، والارتباط بين الملاحظات الماضية مستقرة. إذا كانت البيانات قصيرة أو متقلبة للغاية، ثم بعض طريقة تمهيد قد تؤدي بشكل أفضل. إذا لم يكن لديك ما لا يقل عن 38 نقطة بيانات، يجب عليك النظر في بعض الطرق الأخرى من أريما. الخطوة الأولى في تطبيق منهجية أريما هي التحقق من الاستبانة. ويعني الاستقرارية أن المسلسل لا يزال على مستوى ثابت إلى حد ما مع مرور الوقت. إذا كان هناك اتجاه، كما هو الحال في معظم التطبيقات الاقتصادية أو التجارية، ثم البيانات الخاصة بك ليست ثابتة. وينبغي أن تظهر البيانات أيضا تباينا ثابتا في تقلباتها مع مرور الوقت. وينظر إلى هذا بسهولة مع سلسلة التي موسمية بشكل كبير وتنمو بمعدل أسرع. في مثل هذه الحالة، فإن الصعود والهبوط في الموسمية سوف تصبح أكثر دراماتيكية مع مرور الوقت. وبدون استيفاء شروط الاستبقاء هذه، لا يمكن حساب العديد من الحسابات المرتبطة بالعملية. إذا كانت مؤامرة رسومية من البيانات تشير إلى نونستاتيوناريتي، ثم يجب أن الفرق السلسلة. الفرق هو وسيلة ممتازة لتحويل سلسلة غير ثابتة إلى واحدة ثابتة. ويتم ذلك بطرح الملاحظة في الفترة الحالية من الفترة السابقة. إذا تم هذا التحول مرة واحدة فقط لسلسلة، ويقول لك أن البيانات قد اختلفت أولا. هذه العملية تلغي أساسا الاتجاه إذا سلسلة الخاص ينمو بمعدل ثابت إلى حد ما. إذا كان ينمو بمعدل متزايد، يمكنك تطبيق نفس الإجراء والفرق البيانات مرة أخرى. البيانات الخاصة بك ثم سيكون ديفيرنسد الثانية. أوتوكوريلاتيونس هي قيم رقمية تشير إلى كيفية ارتباط سلسلة البيانات نفسها بمرور الوقت. وبشكل أدق، فإنه يقيس مدى ارتباط قيم البيانات في عدد محدد من الفترات المتباعدة ببعضها البعض بمرور الوقت. وعادة ما يطلق على عدد الفترات المتبقية الفارق الزمني. على سبيل المثال، يقيس الارتباط الذاتي عند التأخر 1 كيفية ارتباط القيم 1 لفترة متباعدة ببعضها البعض طوال السلسلة. ويقيس الارتباط الذاتي عند التأخر 2 كيفية ارتباط البيانات بفترتين منفصلتين طوال السلسلة. قد تتراوح أوتوكوريلاتيونس من 1 إلى -1. تشير قيمة قريبة من 1 إلى وجود ارتباط إيجابي عال في حين أن قيمة قريبة من -1 تعني ارتباطا سلبيا كبيرا. وغالبا ما يتم تقييم هذه التدابير من خلال المؤامرات الرسومية تسمى كوريلاغاغرامز. ويحدد الرسم البياني المترابط قيم الترابط التلقائي لسلسلة معينة عند فترات تأخر مختلفة. ويشار إلى ذلك على أنه دالة الترابط الذاتي وهي مهمة جدا في أسلوب أريما. محاولات منهجية أريما لوصف التحركات في سلسلة زمنية ثابتة كدالة لما يسمى بارامترات الانحدار الذاتي والمتوسط ​​المتحرك. ويشار إلى هذه على النحو المعلمات أر (أوتوريجيسيف) ومعلمات ما (المتوسطات المتحركة). يمكن كتابة نموذج أر مع معلمة واحدة فقط ك. (X) (t) A (1) X (t-1) E (t) حيث تكون السلسلة الزمنية X (t) قيد التحقيق A (1) معلمة الانحدار الذاتي للترتيب 1 X (t-1) (t) مصطلح خطأ النموذج يعني هذا ببساطة أن أي قيمة معينة X (t) يمكن تفسيرها بوظيفة معينة من قيمتها السابقة X (t-1)، بالإضافة إلى بعض الأخطاء العشوائية غير القابلة للتفسير، E (t). إذا كانت القيمة المقدرة ل A (1) .30، فإن القيمة الحالية للمسلسل ستكون مرتبطة ب 30 من قيمته قبل 1. وبطبيعة الحال، يمكن أن تكون مرتبطة سلسلة إلى أكثر من مجرد قيمة واحدة الماضية. على سبيل المثال، X (t) A (1) X (t-1) A (2) X (t-2) E (t) يشير هذا إلى أن القيمة الحالية للسلسلة هي مزيج من القيمتين السابقتين مباشرة، X (t-1) و X (t-2)، بالإضافة إلى بعض الخطأ العشوائي E (t). نموذجنا هو الآن نموذج الانحدار الذاتي للنظام 2. تتحرك متوسط ​​نماذج: وهناك نوع الثاني من نموذج بوكس ​​جينكينز يسمى نموذج المتوسط ​​المتحرك. على الرغم من أن هذه النماذج تبدو مشابهة جدا لنموذج أر، والمفهوم وراءها هو مختلف تماما. أما المعلمات المتوسطة المتحركة فتتصل بما يحدث في الفترة t فقط بالأخطاء العشوائية التي حدثت في الفترات الزمنية السابقة أي E (t-1) و E (t-2) وما إلى ذلك بدلا من X (t-1) و X ( t-2)، (شت-3) كما هو الحال في نهج الانحدار الذاتي. ويمكن كتابة نموذج متوسط ​​متحرك بمصطلح "ما" على النحو التالي. (T) 1 (E) (T) E (t) يطلق على المصطلح B (1) ما من النظام 1. وتستخدم الإشارة السلبية أمام المعلمة للاتفاقية فقط وعادة ما يتم طباعتها خارج معظم السيارات بشكل تلقائي. يقول النموذج أعلاه ببساطة أن أي قيمة معينة من X (t) ترتبط مباشرة فقط إلى الخطأ العشوائي في الفترة السابقة، E (t-1)، وإلى مصطلح الخطأ الحالي، E (t). وكما هو الحال بالنسبة لنماذج الانحدار الذاتي، يمكن تمديد نماذج المتوسط ​​المتحرك لتشمل هياكل ذات ترتيب أعلى تغطي مجموعات مختلفة وأطوال متوسط ​​متحرك. وتسمح منهجية أريما أيضا بنماذج يمكن أن تدمج معا متوسطات الانحدار الذاتي والمتوسط ​​المتحرك معا. وغالبا ما يشار إلى هذه النماذج على أنها نماذج مختلطة. على الرغم من أن هذا يجعل أداة التنبؤ أكثر تعقيدا، قد هيكل محاكاة حقا سلسلة أفضل وإنتاج توقعات أكثر دقة. نماذج نقية تشير ضمنا إلى أن بنية تتكون فقط من أر أو ما المعلمات - ليس على حد سواء. وعادة ما تسمى النماذج التي تم تطويرها من خلال هذا النهج نماذج أريما لأنها تستخدم مزيج من الانحدار الذاتي (أر) والتكامل (I) - مشيرا إلى عملية عكسية عكسية لإنتاج التنبؤات، ومتوسط ​​الحركة (ما) العمليات. ويشار عادة إلى نموذج أريما على أنه أريما (p، d، q). ويمثل ذلك ترتيب مكونات الانحدار الذاتي (p) وعدد مشغلي الاختلاف (d) وأعلى ترتيب للمتوسط ​​المتحرك. على سبيل المثال، أريما (2،1،1) يعني أن لديك نموذج ترتيب الانحدار الثاني من الدرجة الثانية مع العنصر المتوسط ​​المتحرك الأول ترتيب الذي تم اختلاف سلسلة مرة واحدة للحث على الاستقرارية. اختيار الحق مواصفات: المشكلة الرئيسية في الكلاسيكية بوكس-جينكينز تحاول أن تقرر أي مواصفات أريما لاستخدام - i. e. كم عدد المعلمات أر أو ما لتشمل. هذا هو ما خصص الكثير من بوكس-جينكينغز 1976 لعملية تحديد الهوية. وهو يعتمد على التقييم البياني والعددي لعينة الارتباط الذاتي ووظائف الترابط الذاتي الجزئي. حسنا، لنماذج الأساسية الخاصة بك، والمهمة ليست صعبة للغاية. لكل منها وظائف الارتباط الذاتي التي تبدو بطريقة معينة. ومع ذلك، عندما ترتفع في التعقيد، لا يتم الكشف عن أنماط بسهولة. لجعل الأمور أكثر صعوبة، تمثل بياناتك عينة من العملية الأساسية فقط. وهذا يعني أن أخطاء أخذ العينات (القيم المتطرفة، خطأ القياس، وما إلى ذلك) قد تشوه عملية تحديد الهوية النظرية. وهذا هو السبب في النمذجة أريما التقليدية هو الفن بدلا من العلم. الوثائق هو غير المشروط يعني من هذه العملية، و x03C8 (L) هو عقلانية، لا حصر له درجة متخلفة متعدد الحدود المشغل، (1 x03C8 1 L x03C8 2 L 2 x2026) . ملاحظة: الخاصية الثابتة لعنصر نموذج أريما يتوافق مع c. وليس المتوسط ​​غير المشروط 956. بواسطة التحلل ولدز 1. المعادلة 5-12 يتوافق مع عملية عشوائية عشوائية قدمت معاملات x03C8 ط سومابل تماما. هذا هو الحال عندما يكون متعدد الحدود أر، x03D5 (L). غير مستقر . وهذا يعني كل جذورها تقع خارج دائرة الوحدة. بالإضافة إلى ذلك، فإن العملية السببية شريطة تعدد الحدود ما هو قابل للانعكاس. وهذا يعني كل جذورها تقع خارج دائرة الوحدة. الاقتصاد القياسي أدوات يفرض الاستقرار والقابلية للعمليات أرما. عند تحديد نموذج أرما باستخدام أريما. تحصل على خطأ إذا قمت بإدخال المعاملات التي لا تتوافق مع متعدد الحدود أر مستقرة أو متعدد الحدود لا عكسية. وبالمثل، فإن التقدير يفرض قيودا على الاستبانة وقابلية التقلب أثناء التقدير. المراجع 1 ولد، H. دراسة في تحليل السلاسل الزمنية الثابتة. أوبسالا، السويد: ألمكفيست أمب ويكسيل، 1938. اختر بلدكالمتوسط ​​المتحرك المتكامل - أريما تعريف المتوسط ​​المتحرك المتكامل الانحدار الذاتي - أريما نموذج تحليل إحصائي يستخدم بيانات السلاسل الزمنية للتنبؤ بالاتجاهات المستقبلية. وهو شكل من أشكال تحليل الانحدار الذي يسعى للتنبؤ بالتحركات المستقبلية على طول المشي العشوائي الذي يبدو من قبل الأسهم والسوق المالية من خلال دراسة الاختلافات بين القيم في سلسلة بدلا من استخدام قيم البيانات الفعلية. ويشار إلى التأخر في سلسلة الاختلاف باسم الانحدار الذاتي، ويشار إلى التأخر في البيانات المتوقعة كمتوسط ​​متحرك. بريكينغ دون الانحدار التلقائي المتوسط ​​المتحرك المتكامل - أريما يشار إلى هذا النوع من النماذج عموما باسم أريما (p، d، q)، مع الأعداد الصحيحة التي تشير إلى الانحدار الذاتي. متكاملة ومتحركة أجزاء من مجموعة البيانات، على التوالي. أريما النمذجة يمكن أن تأخذ في الاعتبار الاتجاهات والموسمية. والدورات، والأخطاء، والجوانب غير الثابتة لمجموعة البيانات عند وضع التنبؤات.

No comments:

Post a Comment